МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Трехгорный технологический институт –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ТТИ НИЯУ МИФИ)

	УТВЕН	РЖДА	Ю
Директор '	ТТИ НИЯ	У МИФ	М
	Т.И.	Улити	на
«31»	августа	2021	Γ.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«ФИЗИКА (МОЛЕКУЛЯРНАЯ ФИЗИКА, ОСНОВЫ СТАТИСТИЧЕСКОЙ ТЕРМОДИНАМИКИ)»

Специальность: 11.05.01 Радиоэлектронные системы и комплексы

Специализация: Проектирование и технология радиоэлектронных систем и

комплексов

Квалификация (степень) выпускника: инженер

Форма обучения: очная

1 ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В процессе изучения физики закладываются основы общенаучного фундамента, формируются представления 0 современной картине воспитываются основные приемы познавательной деятельности, без которых не может обойтись ни один специалист, в какой бы области науки, техники и производства он ни работал.

Трудно найти среди естественных и технических дисциплин такую область знаний, в которой можно было бы обойтись без учета физических основ важнейших представлений. Сегодня нет сферы человеческой деятельности, в которой в той или иной мере не использовались бы методы физики и её достижения.

Достаточная физическая подготовка гарантирует более глубокое усвоение любых знаний, развивает способности к восприятию научных и технических сведений, с которыми приходится сталкиваться в ходе практической деятельности, позволяет творчески использовать тот обширный материал, который представляют современные компьютерные сети.

1.1 Цели дисциплины

Цели дисциплины «Физика (молекулярная физика, основы статистической термодинамики)» заключаются в формировании у студентов представления о современной физической картине мира и научного мировоззрения, знаний и умений использования фундаментальных законов, теорий классической и современной физики, а также методов физического исследования как основы системы профессиональной деятельности.

1.2 Задачи дисциплины

Задачи дисциплины «Физика (молекулярная физика, основы статистической термодинамики» состоят в том, чтобы раскрыть сущность основных представлений, законов, теорий классичекой и современной физики в их внутренней взаимосвязи и целостности, так как для будущего инженера важно не столько описание широкого круга физических явлений, сколько усвоение иерархии физических законов и понятий, границ их применимости, позволяющее эффективно использовать их в

конкретных ситуациях; формировать у студентов умения и навыки решения обобщённых типовых задач дисциплины (теоретических и экспериментально – практических учебных задач) из различных областей физики как основы умения решать профессиональные задачи; формировать у студентов умение оценивать степень достоверности результатов, полученных с помощью экспериментальных или теоретических методов исследования; способствовать развитию у студентов творческого мышления, навыков самостоятельной познавательной деятельности, умения моделировать физические ситуации с использованием компьютера; ознакомить студентов с современной измерительной аппаратурой, выработать умения и навыки проведения экспериментальных исследований и обработки их результатов, умения выделить конкретное физическое содержание в прикладных задачах будущей специальности.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Физика (молекулярная физика, основы статистической термодинамики» Б1.Б.14 относится к базовой части дисциплин учебного плана и базируется на знаниях, получаемых студентами из курса математики: линейная алгебра, аналитическая геометрия, векторный анализ, дифференциальное и интегральное исчисление; информатики: простейшие навыки работы на компьютере и в сети Интернет. Дисциплина изучается в 3 семестре.

3 КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Перечень компетенций

Изучение дисциплины «Физика (молекулярная физика, основы статистической термодинамики» направлено на формирование у студентов следующих компетенций:

Общепрофессиональные компетенции (ОПК):

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1);
- Способен самостоятельно применять приобретенные математические, естественнонаучные, социально-экономические и профессиональные знания для решения инженерных задач (ОПК-2);
- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3);

Универсальная естественно-научная компетенция (УКЕ):

- Способен использовать знания естественнонаучных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных задачах (УКЕ-1)

Универсальные компетенции (УК):

- Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий (УК-1).

3.2 Перечень результатов образования, формируемых дисциплиной, с указанием уровня их освоения

В результате изучения дисциплины студент должен:

знать:

- фундаментальные законы природы и основные физические и математические законы (3-ОПК-1);
- практические приемы и методы решения инженерных задач; основные виды
 решения инженерных задач; способы формирования решения инженерных задач (3-ОПК-2);
- современные принципы поиска, хранения, обработки, анализа и представления в требуемом формате информации (3-ОПК-3);
- методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации (3-УК-1)
- основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования (3-УКЕ-1)

уметь:

- применять физические законы и математические методы для решения задач теоретического и прикладного характера (У-ОПК-1);
- пользоваться современными средствами измерения, контроля и обосновывать
 выбор таких средств для решения конкретных задач; уметь разрабатывать программы
 и методики измерений, оптимально планировать эксперимент (У-ОПК-2);
- использовать возможности вычислительной техники, программного обеспечения,
 средств защиты информации для решения практических задач (У-ОПК-3);
- применять методы системного подхода и критического анализа проблемных ситуаций; разрабатывать стратегию действий, принимать конкретные решения для ее реализации (У-УК-1)
- использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи (У-УКЕ-1)

владеть:

- навыками использования знаний естественных наук и математики при решении практических задач инженерной деятельности (В-ОПК-1);
- навыками выбора и использования соответствующих ресурсов, современных методик и оборудования для проведения экспериментальных исследований, и измерений; владеть навыками обработки и представления полученных экспериментальных данных для получения обоснованных выводов (В-ОПК-2);
 навыками использования современных информационных технологий и программного обеспечения для решения задач профессиональной деятельности; владеть навыками соблюдения требований информационной безопасности при использовании современных информационных технологий и программного обеспечения (В-ОПК-3);
- методологией системного и критического анализа проблемных ситуаций;
 методиками постановки цели, определения способов ее достижения, разработки стратегий действий (В-УК-1)
- методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами

обработки экспериментальных данных, методами работы с прикладными программными продуктами (B-УКЕ-1)

3.3 Воспитательная работа

Направление/	Создание условий,	Использование воспитательного потенциала			
цели	обеспечивающих	учебных дисциплин			
Ec	тественнонаучный и общо	епрофессиональный модули			
Профессиональное	- формирование	1.Использование воспитательного потенциала			
и трудовое	глубокого понимания	дисциплин естественнонаучного и			
воспитание	социальной роли	общепрофессионального модуля для:			
	профессии, позитивной	- формирования позитивного отношения к			
	и активной установки на	профессии инженера (конструктора, технолога),			
	ценности избранной	понимания ее социальной значимости и роли в			
	специальности,	обществе, стремления следовать нормам			
	ответственного	профессиональной этики посредством			
	отношения к	контекстного обучения, решения практико-			
	профессиональной	ориентированных ситуационных задач формирования устойчивого интереса к			
	деятельности, труду (B14)	профессиональной деятельности, способности			
	(114)	критически, самостоятельно мыслить,			
		понимать значимость профессии посредством			
		осознанного выбора тематики проектов,			
		выполнения проектов с последующей			
		публичной презентацией результатов, в том			
		числе обоснованием их социальной и			
		практической значимости;			
		- формирования навыков командной работы, в			
		том числе реализации различных проектных			
		ролей (лидер, исполнитель, аналитик и пр.)			
		посредством выполнения совместных проектов.			
		2.Использование воспитательного потенциала			
		дисциплин "Экономика и управление производством", "Инновационная экономика и			
		технологическое предпринимательство",			
		"Правоведение" для:			
		- формирования навыков системного видения			
		роли и значимости выбранной профессии в			
		социально-экономических отношениях через			
		контекстное обучение			
	- формирование	Использование воспитательного потенциала			
	психологической	дисциплин общепрофессионального модуля			
	готовности к	для:			
	профессиональной	- формирования устойчивого интереса к			
	деятельности по	профессиональной деятельности, потребности в			
	избранной профессии	достижении результата, понимания			
	(B15)	функциональных обязанностей и задач			
		избранной профессиональной деятельности, чувства профессиональной ответственности			
		чувства профессиональной ответственности через выполнение учебных, в том числе			
		практических заданий, требующих строгого			
		соблюдения правил техники безопасности и			
		инструкций по работе с оборудованием в			
		рамках лабораторного практикума.			
	1	1 1 V			

Интеллектуальное	- формирование	Использование воспитательного потенциала
воспитание	культуры умственного труда (B11)	дисциплин гуманитарного, естественнонаучного, общепрофессионального и профессионального модуля для формирования культуры умственного труда посредством вовлечения студентов в учебные исследовательские задания, курсовые работы и др.

4 СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины в 3 семестре составляет 4 зачетные единицы, 144 часа.

№ п/ Раздел учебной	Недели	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость (в часах)		Текущий контроль успеваемости (неделя,	Аттестация раздела (неделя,	Макс. балл за раздел*			
	дисциплины		Лекции	Лаб. работы	Прак. работы	Самост. работа	форма)	форма)	
			•	1	Семест	р 3		•	
1	Раздел 1	1-4	7	4	6	10	ЛР1	T1-4	10
2	Раздел 2	5-8	6	5	8	8	ЛР2	KP1-8	15
3	Раздел 3	9-12	7	4	6	10	ЛР3	T2-12	10
4	Раздел 4	13-18	6	5	8	8	ЛР4	KP2-17	15
Ито	0		26	18	28	36			50
Экза	Экзамен 36							50	
Итог	Итого за семестр						100		

4.1 Содержание лекций 3 семестр

Раздел 1. Динамический, термодинамический и статистический подходы к изучению молекулярных систем.

Тема 1.1 Объекты исследования, цели, методы молекулярной физики. Динамический, термодинамический и статистический подходы к изучению молекулярных систем. Тема 1.2 Процессы переноса. Вид процесса переноса в газах - теплопроводность. Связь между коэффициентами теплопроводности, внутреннего трения и диффузии.

Раздел 2. Основы молекулярно - кинетической теории газов.

Тема 2.1 Среднее значение кинетической энергии, основное уравнение молекулярнокинетической теории газов. Удельная теплоемкость идеального газа. Термодинамическая температура. Тема 2.2 Принцип детального равновесия. Число степеней свободы молекул, теорема о распределении энергии по степеням свободы.

Раздел 3. Первое начало термодинамики.

Тема 3.1 Первое начало термодинамики.

Работа при изопроцессах. Физический смысл внутренней энергии, работы, теплоты. І Работа, микросистемой. начало термодинамики. совершаемая Ι начало Уравнение термодинамики ДЛЯ изопроцессов. состояния идеального газа. Теплоемкость идеального газа. Изохорическая изобарическая И молярная теплоемкость идеального газа.

<u>Тема 3.2 Второе, третье начала термодинамики.</u>

Энтропия. Циклы. II начало термодинамики. Энтропия, ее свойства. Теорема Ненста или III начало термодинамики. Цикл Карно.

Раздел 4. Статистическая физика. Распределение Максвелла и Больцмана.

Тема 4.1 Распределение Максвелла и Больцмана.

Основы статистической физики. Вероятность. Функция распределения. Распределения Максвелла. Распределения молекул по модулю скорости. Распределение Больцмана.

Тема 4.2 Средняя энергия молекул.

Давление газа на стенки сосуда. Степени свободы молекул. Распределение энергии газа по степеням свободы. Внутренняя энергия идеального газа. Уравнение Ван-дер-Ваальса.

4.2 Тематический план лабораторных работ

3 семестр

- 1. Определение универсальной газовой постоянной методом откачки.
- 2. Определение изменения энтропии твердого тела при его нагревании и плавлении.
- 3. Изучение вязкости воздуха.
- 4. Определение отношения теплоемкостей воздуха

4.3 Тематический план практических работ

3 семестр

1. Элементы статистической теории идеальных газов и законы распределения случайных

величин

- 2 Основы молекулярно кинетической теории газов
- 3 Распределения в Молекулярной физике. Подготовка к контрольной работе №1. Проведение контрольной работы №1.

Процессы макросистем. Изопроцессы.

Работа при изопроцессах. Внутренняя энергия идеального газа. Физический смысл внутренней энергии, работы, теплоты.

- 4. Первое начало термодинамики.
- I начало термодинамики. Работа, совершаемая микросистемой. I начало термодинамики для изопроцессов.
- 5. Молекулярно-кинетическая теория.

Уравнение состояния идеального газа. Теплоемкость идеального газа. Изохорическая и изобарическая молярная теплоемкость идеального газа. Уравнение Ван-дер-Ваальса.

6. Второе начало термодинамики.

Энтропия, ее свойства. Циклы.

7. Второе начало термодинамики.

Цикл Карно. II начало термодинамики. Теорема Ненста или III начало термодинамики.

8. Распределение Максвелла и Больцмана.

Основы статистической физики. Вероятность. Функция распределения. Распределения Максвелла. Распределения молекул по модулю скорости. Распределение Больцмана.

- 9. Подготовка к контрольной работе № 2.
- 10. Контрольная работа № 2.
- 11. Работа над ошибками.

4.4 Самостоятельная работа студентов 3 семестр

Агрегатные состояния вещества. Основные признаки.

- 2 Термодинамическая температура.
- 3 Эмпирические шкалы температур.
- 4 Элементы комбинаторики.
- 5 Теоремы сложения и умножения вероятностей, условная вероятность.
- 6 Дискретные случайные величины, закон распределения дискретных случайных величин. Математическое ожидание и дисперсия.
- 7 Понятие флуктуации, среднее число частиц, зависимость флуктуаций от числа частиц в системе.

5 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с компетентностным подходом выпускник вуза должен не просто обладать определенной суммой знаний, а уметь при помощи этих знаний решать конкретные задачи производства.

Учитывая требования ОС НИЯУ МИФИ по специальности 11.05.01 "Радиоэлектронные системы и комплексы", реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводятся в специализированной аудитории с применением мультимедийного проектора в виде учебной презентации. Учебные материалы предъявляются обучающимся для ознакомления и изучения, основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением и контролем конспекта.

Практические занятия проводятся также с применением мультимедийного проектора с разбором типовых решений задач по механике, молекулярно-кинетической теорией с выдачей учебных материалов студентам.

Лабораторные работы проводятся в лаборатории общей физики на лабораторных установках бригадой студентов из 4-5 человек. Все лабораторные работы выполняются фронтально. За 2-3 дня до проведения лабораторных работ студентам выдается их описание для изучения, перед началом работ проводится тестирование студентов для проверки их готовности к выполнению лабораторных работ.

Текущий контроль знаний студентов по отдельным разделам и в целом по дисциплине проводится в форме тестирования, а также выполнением самостоятельных работ по решению физических задач, физических диктантов. Используются интерактивные формы обучения на лекционных и практических занятиях.

6 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯУСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫИ УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Перечень оценочных средств, используемых для текущей аттестации

Код	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде				
	3 семестр						
T1	Тест №1	Система стандартизированных заданий, позволяющая автоматизировать процедуру	Фонд тестовых				
T2	Тест №2	измерения уровня знаний и умений обучающегося	заданий				
КР1	Контрольная работа№1	Средство проверки умений применять	Комплект контрольных				
КР2	Контрольная работа №2	полученные знания для решения задач определенного типа по теме или разделу	заданий по вариантам				

ЛР1	Лабораторная работа №1		
ЛР2	Лабораторная работа №2	Средства проверки умений и навыков	Методическое
ЛР3	Лабораторная работа №3	применения на практике теоретических знаний	руководство
ЛР4	Лабораторная работа №4		

1.7 Расшифровка компетенций через планируемые результаты обучения

Связь между формируемыми компетенциями и планируемыми результатами обучения представлена в следующей таблице:

Код	Проектируемы и индикато	Средства и технологии		
	Знать (3)	Уметь (У)	Владеть (В)	оценки
ОПК-1	3-ОПК-1	У-ОПК-1	В-ОПК-1	ЛР1, ЛР2, КР1,Э
ОПК-2	3-ОПК-2	У-ОПК-2	В-ОПК-2	
ОПК-3	3-ОПК-3	У-ОПК-3	В-ОПК-3	
УК-1	3-УК-1	У-УК-1	В-УК-1	ЛР1, ЛР3, ЛР4, Т2, КР2,Э
УКЕ-1	3-УКЕ-1	У-УКЕ-1	В-УКЕ-1	ЛР2, Т1,КР1, КР2,Э

1.8 Этапы формирования компетенций

			Знани	Виды аттестации			
Раздел	Темы занятий	Коды компете нций	я, умени я и навык и	Текущий контроль - неделя	Аттеста ция раздела – неделя	Промеж уточная аттестац ия	
		3 семест	p				
Раздел 1.	Динамический, термодинамический и статистический подходы к изучению молекулярных систем. Тема 1.1 Объекты исследования, цели, методы молекулярной физики. Динамический,	ОПК-1; ОПК-2; ОПК-3; УК-1; УКЕ-1	3-ОПК 1; У- ОПК-1 В- ОПК-1	;	T1-4	экзаме Н	

	термодинамический и статистический подходы к изучению молекулярных систем. Тема 1.2 Процессы переноса. Вид процесса переноса в газах - теплопроводность. Связь между коэффициентами теплопроводности, внутреннего трения и диффузии.					
Раздел 2.	Основы молекулярно - кинетической теории газов. Тема 2.1 Среднее значение кинетической энергии, основное уравнение молекулярно- кинетической теории газов. Удельная теплоемкость идеального газа. Термодинамическая температура. Тема 2.2 Принцип детального равновесия. Число степеней свободы молекул, теорема о распределении энергии по степеням свободы.	ОПК-1; ОПК-2; ОПК-3; УК-1; УКЕ-1	3-ОПК- 2; У- ОПК-2; В- ОПК-2.	ЛР2	KP1-8	
Раздел 3.	Первое начало термодинамики. Тема 3.1 Первое начало термодинамики. Работа при изопроцессах. Физический смысл внутренней энергии, работы, теплоты. І начало термодинамики. Работа, совершаемая микросистемой. І начало	ОПК-1; ОПК-2; ОПК-3; УК-1; УКЕ-1	3-ОПК- 3; У- ОПК-3; В- ОПК-3.	ЛР3	T2-12	

	термодинамики для изопроцессов. Уравнение состояния идеального газа. Теплоемкость идеального газа. Изохорическая и изобарическая молярная теплоемкость идеального газа. Тема 3.2 Второе, третье начала термодинамики. Энтропия. Циклы. ІІ начало термодинамики. Энтропия, ее свойства. Теорема Ненста или ІІІ начало термодинамики.					
Раздел 4.		ОПК-1; ОПК-2; ОПК-3; УК-1; УКЕ-1	3-УК- 1; У-УК- 1; В-УК- 1.	ЛР4	KP2-17	

Внутренняя энергия			
идеального газа.			
Уравнение Ван-дер-			
Ваальса.			

Экзаменационные вопросы

- 1. Объекты исследования, цели, методы молекулярной физики.
- 2. Динамический, термодинамический и статистический подходы к изучению молекулярных систем.
- 3. Статистический ансамбль, понятие среднего по времени и среднего по ансамблю.
- 4. Эргодическая гипотеза и постулат равновероятности.
- 5. Понятия теории вероятности: случайные события, определение вероятности (классическое, геометрическое, статистическое).
- 6. Теоремы сложения и умножения вероятностей, условная вероятность, нормировка вероятности.
- 7. Плотность вероятности и функция распределения непрерывной случайной величины.
- 8. Распределение молекул газа по объему. Вероятность обнаружения молекулы газа в выделенном объеме, если плотность вероятности постоянна. (показать, что вероятность сводится к соотношению объемов).
- 9. Математическое ожидание, дисперсия. Условие нормировки вероятности.
- 10. Понятие макро- и микросостояния, принцип равновероятности микросостояний, термодинамическое равновесие, приближение к равновесию.
- 11. Понятие идеального газа, теорема о равнораспределении энергии 12 Нормальное распределение случайной величины (распределение Гаусса).
- 13. Биномиальное распределение случайных величин.
- 14. Понятие флуктуации, среднее число частиц, зависимость флуктуаций от числа частиц в системе.
- 15. Среднее значение кинетической энергии, основное уравнение молекулярно-кинетической теории газов.
- Удельная теплоемкость идеального газа. Термодинамическая температура.
 Принцип детального равновесия.
- 17. Распределение молекул по компонентам скорости и модулю скорости (распределение Максвелла).

- 18. Распределение Максвелла по энергии. Характерные скорости и энергии распределения.
- 19. Идеальный газ во внешнем потенциальном поле (распределение Больцмана).
- 20. Барометрическая формула.
- 21. Смесь газов в сосуде распределение по концентрации.
- 22. Подъемная сила летательных аппаратов с открытой и закрытой оболочками.
- 23. Число степеней свободы молекул, теорема о распределении энергии по степеням свободы.
- 24. Физический смысл внутренней энергии. Первое начало термодинамики.
- 25. Работа совершаемая макросистемой. Первое начало термодинамики.
- 26. Первое начало термодинамики для изопроцессов.
- 27. Уравнение состояния идеального газа. Теплоемкость идеального газа. Изохорическая и изобарическая молярная теплоемкости идеального газа.
- 28. Адиабатический процесс. Политропический процесс.
- 29. Молекулярно-кинетическая теория газа. Давление газа на стенки сосудов. Физический смысл температуры. Степени свободы.
- 30. Второе начало термодинамики.
- 31. Энтропия, её свойства. Теория Нернста (Третье начало термодинамики).
- 32. Цикл Карно. КПД обратимых двигателей.
- 33. Основы статистической физики. Вероятность.
- 34. Функция распределения. Условие нормировки. Среднее значение случайной величины.
- 35. Распределение Максвелла. Закон Максвелла.
- Распределение молекул по модулю скорости. Вероятная, средняя скорости молекул.
- 37. Распределение Больцмана.
- 38. Средняя энергия молекул. Давление газа на стенки сосуда. Степени свободы молекул. Распределение энергии газа по степеням свободы.
- 39. Внутренняя энергия идеального газа. Уравнение Ван-дер-Ваальса

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1 Основная литература

- 1. Детлаф, А.А.Курс физики [Текст] : учеб.пособие для вузов / А. А. Детлаф, Б. М. Яворский. 9-е изд., стер. М. : Академия, 2014. 719, [1] с. : ил., табл. (Высшее профессиональное образование). Предм. указ.: с. 693-713.
- 2. Дмитриева, Е.И. Физика для инженерных специальностей [Электронный ресурс]: учебное пособие/ Дмитриева Е.И.— Электрон.текстовые данные.— Саратов: Ай Пи Эр Медиа, 2012.— 142 с.— Режим доступа: http://www.iprbookshop.ru/729.— ЭБС «IPRbooks»
- 1. Корявов, В. П. Методы решения задач в общем курсе физики. Теория, формулы, таблицы [Текст] : учеб.пособие / В. П. Корявов. М.: Студент, 2014. 445 с.: ил. Предм. указ.: с.432-443. 700 экз. ISBN 978-5-4363-0002-3
- 2. Трофимова, Т.И.Курс физики [Текст]: учебное пособие для инженернотехнических специальностей вузов / Т. И. Трофимова. 20-е изд., стер. М.: Академия, 2014. 560 с.: ил. (Высшее профессиональное образование). Предм. указ.: с. 537. ISBN 978-5-4468-0627-0
- 3. Трофимова, Т.И.Курс физики. Задачи и решения [Текст]: учебное пособие для студентов высших учебных заведений, обучающихся по техническим направлениям подготовки и специальностям / Т. И. Трофимова, А. В. Фирсов. 5-е изд., стер. Москва: Академия, 2012. 591 с. : ил. ; 24 см. (Высшее профессиональное образование). ISBN 978-5-7695-9467-0 (в пер.)
- 6. Савельев, И.В. Курс общей физики [Текст] : в 5 т. / И. В. Савельев. 5-е изд., испр. СПб.: Лань, 2011. (Учебники для вузов. Специальная литература). Т. 1: Механика: учебное пособие для студентов вузов. 2011. -336с. Режимдоступа: http://e.lanbook.com/books/element.php?pl1_id=704 ЭБС «Лань»

- 7. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс]: учебное пособие. Электрон. Дан. СПб.: Лань,2013.-292с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=32823 ЭБС «Лань»
- 8. Струков, Б.А.Физика [Текст]: учебник для студентов учреждений высшего проф. образования / Б. А. Струков, Л. Г. Антошина, С. В. Павлов; под ред. Б. А. Струкова. М.: Академия, 2011. 400 с. (Высшее профессиональное образование. Естественные науки). Библиогр.: с. 392. ISBN 978-5-7695-6521-2

7.2 Дополнительная литература

- 1. Алешкевич, В.А. Курс общей физики. Механика [Электронный ресурс] : / В.А. Алешкевич, Л.Г. Деденко, В.А. Караваев. Электрон.дан. М. :Физматлит, 2011. 469 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2384 ЭБС «Лань»
- Иродов, И.Е. Задачи по общей физике [Электронный ресурс]: учебное пособие.
 — Электрон.дан. М.: Бином. Лаборатория знаний, 2012. 435 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4389
- Кондратьев, А.С.Методы решения задач по физике [Текст]: монография / А. С. Кондратьев, Л. А. Ларченкова, А. В. Ляпцев. Москва: Физматлит, 2012. 310, [1] с.: ил.; 23 см. Библиогр.: с. 311. ISBN 978-5-9221-1365-6 (в пер.)
- 4. Трофимова, Т. И. Физика в таблицах и формулах [Текст] : учеб.пособие для студентов вузов, обучающихся по техн. специальностям / Т. И. Трофимова. 4-е изд., стер. Москва : Академия, 2010. 447 с. : рис., табл., граф. (Высшее профессиональное образование). Предм. указ.: с. 431-442. ISBN 978-5-7695-7036-0

7.3 Периодические издания

Информатика. Физика. http://www.iprbookshop.ru/32515.html

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения учебных занятий лекционного и семинарского типа, групповые и индивидуальных консультаций, текущего контроля, промежуточной аттестации используются учебные аудитории, оснащенные оборудованием и техническими средствами обучения.

Учебные аудитории для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду вуза.

ТТИ НИЯУ МИФИ обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения.

Сведения о наличии оборудованных учебных кабинетов, объектов для проведения практических занятий представлены на официальном сайте ТТИ НИЯУ МИФИ: http://tti-mephi.ru/ttimephi/sveden/objects